viernes, 1 de julio de 2011

miércoles, 29 de junio de 2011

3.1.1 Área bajo la gráfica de una función.

INTEGRAL DEFINIDA
“Si en cualquier figura delimitada por rectas y por una curva; se inscriben y circunscriben rectángulos en número arbitrario, y si la anchura de tales rectángulos se va disminuyendo a la par que se aumenta su número hasta el infinito, afirmo que las razones entre las figuras inscrita y circunscrita y la figura curvilínea acabarán siendo razones de igualdad”­--- Isaac Newton.
El área, es un concepto familiar para todos nosotros, por el estudio de figuras geométricas sencillas como el triángulo, el cuadrado, el círculo y el rectángulo. La idea o el concepto que manejamos de área, es la magnitud que mide de algún modo el tamaño de una región acotada, es decir, cuanto mide una superficie. Ciertamente, para hallar el área de las figuras geométricas sencillas que ya conocemos, disponemos de formulas matemáticas que facilitan este cálculo.
Ahora, nuestro problema consiste en encontrar un método, que nos permita calcular el área de cualquier región, sin importar la forma que esta tenga. Para lograr esto, es necesario primero introducir el símbolo o la notación de Sumatoria. Para representar esto, se una la letra griega mayúscula “sigma”, para abreviar la sumatoria, y se usa de este modo:

'Cálculo Integral'
y sus partes son:
a: representa los términos de la sumatoria

ak: representa el termino k-ésimo de la sumatoria

an: representa el termino n-ésimo y último de la sumatoria

k: es el índice de la sumatoria

1: es el límite inferior de la sumatoria

n: es el límite superior de la sumatoria

'Cálculo Integral'

Gráfica 1.
Como habíamos mencionado anteriormente, nuestra preocupación ahora, es encontrar el área de cualquier superficie sin importar su forma. Supongamos que queremos hallar el área de la región comprendida entre el eje x, la recta x=a, la recta x=b y la gráfica de la función f(x) (Gráfica 1).

'Cálculo Integral'

Gráfica 2.
Ahora, supongamos que tomamos la región y la dividimos en una serie de rectángulos de base x (Gráfica 2.). Si lográramos calcular el área de cada uno de esos rectángulos, y las sumáramos todas, obtendríamos una aproximación del área total de la región que deseamos.
Pero como ya vimos que esa sumatoria se puede reducir a una sola expresión, podríamos hacerlo de modo que, tomemos un valor xi, dentro del intervalo [a,b], tal que exista xi y un f(xi), de tal manera que se cumpla que:

'Cálculo Integral'

de esta manera se puede calcular el área de ese rectángulo así:

,

Puesto que el área de un rectángulo, como todos sabemos, es base por altura. Debido a que este rectángulo puede ser cualquier rectángulo dentro de la región, puesto que xi puede ser cualquier valor, ya podemos sumar sus áreas para lograr la aproximación:

,

Donde esta sumatoria nos representa el área aproximada de la región que deseamos. Como ya habíamos visto que xi, representa cada una de las particiones de nuestra región, ahora definamos a P como la partición más grande de todas, es decir la base de rectángulo más grande de dotas las de la región y n el número de particiones. Así, si hacemos que P se haga tan pequeño como pueda o que el número de particiones n, se haga lo más grande que pueda, hallamos una mejor aproximación del área que buscamos (Gráfica 3).

'Cálculo Integral'

Gráfica 3.
De aquí podemos deducir que si hallamos el Límite cuando el número de rectángulos sea muy grande o cuando las longitudes de las bases de esos rectángulos sean muy pequeñas, lograremos la mejor y más exacta aproximación del área que tanto hemos buscado. Y esto se representa así:

,

que es equivalente a,

,
con esto ya encontramos la mejor aproximación del área. Ahora si, podemos definir la integral definida ya que,



Por lo tanto podemos deducir que la integral definida es una suma y así la hemos definido. Y de esta manera, también hemos mostrado la primera aplicación de la integración definida, hallar el área bajo una curva.
Ya que definimos la integral definida, identifiquemos cual es su notación y las partes que la componen.



Toda la expresión se lee, integradle f(x), desde a hasta b; a y b, son los límites de integración, donde a es el límite inferior y b es el límite superior. El símbolo", es una s mayúscula alargada, que significa suma y se llama símbolo de integración. La función f(x), es el integrando y el dx, se llama diferencial y es el que lleva la variable de integración que en este caso es x.

3.1.2 Área entre las gráficas de funciones.






lunes, 27 de junio de 2011

3.2 Longitud de curvas.

Hasta ahora, hemos usado la integral definida para calcular magnitudes con unidades cúbicas y con unidades cuadradas; esto nos lleva a preguntarnos, ¿podemos medir unidades lineales mediante la integral definida? Pues en esta aplicación veremos como podemos medir longitudes usando esta magnífica herramienta del cálculo.


Desde sierre, hemos tenido la noción de longitud, y siempre nos ha parecido muy sencillo medir objetos, usando los diferentes instrumentos de medición o simplemente calculando dichas longitudes usando formulas sencillas que nos sirven básicamente para estimar medidas de rectas o circunferencias; de manera que ahora tendremos la oportunidad de calcular longitudes pero esta vez de segmentos curvos.
De nuestra experiencia en cursos anteriores, hemos aprendido a calcular la distancia entre dos puntos usando la formula que deriva del teorema de Pitágoras:






Esta formula nos será útil para lograr nuestro propósito de medir la longitud de arco, pero antes tenemos que tener en cuenta que para poder realizar este cálculo, es necesario que la curva además de ser continua en un intervalo cerrado, sea también continua su derivada en el mismo intervalo [a,b]. También hay que saber que, no todas las curvas tienen longitud finita entre dos de sus puntos; si una curva tiene longitud finita entre dos de sus puntos, se dice que es rectificable entre esos dos puntos.

'Cálculo Integral'

Gráfica 11.
Sea f(x), una función rectificable en el intervalo cerrado [a,b], aproximamos la curva de su gráfica mediante segmentos de recta, para hallar una estimación de su longitud. Tenemos i, donde es la partición correspondiente de [a,b] tal que


a = n1< n2< n3< n4<…< ni = b


Con esto, siendo , estimamos una aproximación de la longitud del arco, que denotamos s, así:




para:


y


podemos estimar la longitud de ese en todo el intervalo [a,b], así:






tomando el límite en el lado derecho y sacando un factor común ( x)2, podemos afirmar que la longitud del arco es:






ahora, como f'(x), es continua, entonces es aplicable el teorema del valor medio de modo que existe algún ci en [xi-1,xi], tal que:






o equivalente:






así, podemos decir que:






que realmente es equivalente a:




que finalmente es lo que definimos en cálculo integral como longitud de arco.


3.3 Cálculo de volumenes sólidos de revolución.






3.4 Cálculo de centroides.

Calculo De Las Centroides

Calculo de la Centroides por medio de la integración.
1. Preparar un esquema del cuerpo a escala.
2. Establecer un sistema de coordenadas, en la mayoría de los cuerpos que sean superficies planas, se utilizan coordenadas rectangulares, siempre que el cuerpo presente un eje o un plano de simetría se tomara uno de los ejes, el centroide se encontrara siempre sobre tal eje.
3. Seleccionar un elemento de volumen , superficie o longitud.. para la determinación del centro de masa o centro de gravedad determinar la masa o el peso del elemento utilizando la expresión adecuada de la densidad o del peso especifico.
4. Escribir una expresión del primer momento del elemento respecto a uno de los ejes o planos de referencia. Integrar la expresión para determinar el primer momento.
5. Utilizar la ecuación adecuada para obtener las coordenadas del centroide.
6. Repetir los pasos del 3 al 5 con las coordenadas obtenidas.
Otras integrales
A pesar de que las integrales de Riemann y Lebesgue son las definiciones más importantes de integral, hay unas cuantas más, por ejemplo:
* La integral de Riemann-Stieltjes, una extensión de la integral de Riemann.
* La integral de Lebesgue-Stieltjes, desarrollada por Johann Radon, que generaliza las integrales de Riemann-Stieltjes y de Lebesgue.
* La integral de Daniell, que incluye la integral de Lebesgue y la integral de Lebesgue-Stieltjes sin tener que depender de ninguna medida.
* La integral de Henstock-Kurzweil, definida de forma variada por Arnaud Denjoy, Oskar Perron, y Jaroslav Kurzweil, y desarrollada por Ralph Henstock.
* La integral de Darboux, que es equivalente a la integral de Riemann.
* La integral de Haar, que es la integral de Lebesgue con la medida de Haar.
* La integral de McShane.
* La integral de Buchner
Otras aplicaciones para las integrales.
* Área entre curvas.
* Sólidos de revolución.
* Longitud de curvas.
* Centroides de figuras planas....

EJEMPLO